Skip to content

pydantic_ai.models.bedrock

Setup

For details on how to set up authentication with this model, see model configuration for Bedrock.

LatestBedrockModelNames module-attribute

LatestBedrockModelNames = Literal[
    "amazon.titan-tg1-large",
    "amazon.titan-text-lite-v1",
    "amazon.titan-text-express-v1",
    "us.amazon.nova-pro-v1:0",
    "us.amazon.nova-lite-v1:0",
    "us.amazon.nova-micro-v1:0",
    "anthropic.claude-3-5-sonnet-20241022-v2:0",
    "us.anthropic.claude-3-5-sonnet-20241022-v2:0",
    "anthropic.claude-3-5-haiku-20241022-v1:0",
    "us.anthropic.claude-3-5-haiku-20241022-v1:0",
    "anthropic.claude-instant-v1",
    "anthropic.claude-v2:1",
    "anthropic.claude-v2",
    "anthropic.claude-3-sonnet-20240229-v1:0",
    "us.anthropic.claude-3-sonnet-20240229-v1:0",
    "anthropic.claude-3-haiku-20240307-v1:0",
    "us.anthropic.claude-3-haiku-20240307-v1:0",
    "anthropic.claude-3-opus-20240229-v1:0",
    "us.anthropic.claude-3-opus-20240229-v1:0",
    "anthropic.claude-3-5-sonnet-20240620-v1:0",
    "us.anthropic.claude-3-5-sonnet-20240620-v1:0",
    "anthropic.claude-3-7-sonnet-20250219-v1:0",
    "us.anthropic.claude-3-7-sonnet-20250219-v1:0",
    "anthropic.claude-opus-4-20250514-v1:0",
    "us.anthropic.claude-opus-4-20250514-v1:0",
    "global.anthropic.claude-opus-4-5-20251101-v1:0",
    "anthropic.claude-sonnet-4-20250514-v1:0",
    "us.anthropic.claude-sonnet-4-20250514-v1:0",
    "eu.anthropic.claude-sonnet-4-20250514-v1:0",
    "anthropic.claude-sonnet-4-5-20250929-v1:0",
    "us.anthropic.claude-sonnet-4-5-20250929-v1:0",
    "eu.anthropic.claude-sonnet-4-5-20250929-v1:0",
    "anthropic.claude-haiku-4-5-20251001-v1:0",
    "us.anthropic.claude-haiku-4-5-20251001-v1:0",
    "eu.anthropic.claude-haiku-4-5-20251001-v1:0",
    "cohere.command-text-v14",
    "cohere.command-r-v1:0",
    "cohere.command-r-plus-v1:0",
    "cohere.command-light-text-v14",
    "meta.llama3-8b-instruct-v1:0",
    "meta.llama3-70b-instruct-v1:0",
    "meta.llama3-1-8b-instruct-v1:0",
    "us.meta.llama3-1-8b-instruct-v1:0",
    "meta.llama3-1-70b-instruct-v1:0",
    "us.meta.llama3-1-70b-instruct-v1:0",
    "meta.llama3-1-405b-instruct-v1:0",
    "us.meta.llama3-2-11b-instruct-v1:0",
    "us.meta.llama3-2-90b-instruct-v1:0",
    "us.meta.llama3-2-1b-instruct-v1:0",
    "us.meta.llama3-2-3b-instruct-v1:0",
    "us.meta.llama3-3-70b-instruct-v1:0",
    "mistral.mistral-7b-instruct-v0:2",
    "mistral.mixtral-8x7b-instruct-v0:1",
    "mistral.mistral-large-2402-v1:0",
    "mistral.mistral-large-2407-v1:0",
]

Latest Bedrock models.

BedrockModelName module-attribute

BedrockModelName = str | LatestBedrockModelNames

Possible Bedrock model names.

Since Bedrock supports a variety of date-stamped models, we explicitly list the latest models but allow any name in the type hints. See the Bedrock docs for a full list.

BedrockModelSettings

Bases: ModelSettings

Settings for Bedrock models.

See the Bedrock Converse API docs for a full list. See the boto3 implementation of the Bedrock Converse API.

Source code in pydantic_ai_slim/pydantic_ai/models/bedrock.py
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
class BedrockModelSettings(ModelSettings, total=False):
    """Settings for Bedrock models.

    See [the Bedrock Converse API docs](https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_Converse.html#API_runtime_Converse_RequestSyntax) for a full list.
    See [the boto3 implementation](https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/bedrock-runtime/client/converse.html) of the Bedrock Converse API.
    """

    # ALL FIELDS MUST BE `bedrock_` PREFIXED SO YOU CAN MERGE THEM WITH OTHER MODELS.

    bedrock_guardrail_config: GuardrailConfigurationTypeDef
    """Content moderation and safety settings for Bedrock API requests.

    See more about it on <https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_GuardrailConfiguration.html>.
    """

    bedrock_performance_configuration: PerformanceConfigurationTypeDef
    """Performance optimization settings for model inference.

    See more about it on <https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_PerformanceConfiguration.html>.
    """

    bedrock_request_metadata: dict[str, str]
    """Additional metadata to attach to Bedrock API requests.

    See more about it on <https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_Converse.html#API_runtime_Converse_RequestSyntax>.
    """

    bedrock_additional_model_response_fields_paths: list[str]
    """JSON paths to extract additional fields from model responses.

    See more about it on <https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html>.
    """

    bedrock_prompt_variables: Mapping[str, PromptVariableValuesTypeDef]
    """Variables for substitution into prompt templates.

    See more about it on <https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_PromptVariableValues.html>.
    """

    bedrock_additional_model_requests_fields: Mapping[str, Any]
    """Additional model-specific parameters to include in requests.

    See more about it on <https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html>.
    """

    bedrock_cache_tool_definitions: bool
    """Whether to add a cache point after the last tool definition.

    When enabled, the last tool in the `tools` array will include a `cachePoint`, allowing Bedrock to cache tool
    definitions and reduce costs for compatible models.
    See https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-caching.html for more information.
    """

    bedrock_cache_instructions: bool
    """Whether to add a cache point after the system prompt blocks.

    When enabled, an extra `cachePoint` is appended to the system prompt so Bedrock can cache system instructions.
    See https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-caching.html for more information.
    """

    bedrock_cache_messages: bool
    """Convenience setting to enable caching for the last user message.

    When enabled, this automatically adds a cache point to the last content block
    in the final user message, which is useful for caching conversation history
    or context in multi-turn conversations.

    Note: Uses 1 of Bedrock's 4 available cache points per request. Any additional CachePoint
    markers in messages will be automatically limited to respect the 4-cache-point maximum.
    See https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-caching.html for more information.
    """

bedrock_guardrail_config instance-attribute

bedrock_guardrail_config: GuardrailConfigurationTypeDef

Content moderation and safety settings for Bedrock API requests.

See more about it on https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_GuardrailConfiguration.html.

bedrock_performance_configuration instance-attribute

bedrock_performance_configuration: (
    PerformanceConfigurationTypeDef
)

Performance optimization settings for model inference.

See more about it on https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_PerformanceConfiguration.html.

bedrock_request_metadata instance-attribute

bedrock_request_metadata: dict[str, str]

Additional metadata to attach to Bedrock API requests.

See more about it on https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_Converse.html#API_runtime_Converse_RequestSyntax.

bedrock_additional_model_response_fields_paths instance-attribute

bedrock_additional_model_response_fields_paths: list[str]

JSON paths to extract additional fields from model responses.

See more about it on https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html.

bedrock_prompt_variables instance-attribute

bedrock_prompt_variables: Mapping[
    str, PromptVariableValuesTypeDef
]

Variables for substitution into prompt templates.

See more about it on https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_PromptVariableValues.html.

bedrock_additional_model_requests_fields instance-attribute

bedrock_additional_model_requests_fields: Mapping[str, Any]

Additional model-specific parameters to include in requests.

See more about it on https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html.

bedrock_cache_tool_definitions instance-attribute

bedrock_cache_tool_definitions: bool

Whether to add a cache point after the last tool definition.

When enabled, the last tool in the tools array will include a cachePoint, allowing Bedrock to cache tool definitions and reduce costs for compatible models. See https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-caching.html for more information.

bedrock_cache_instructions instance-attribute

bedrock_cache_instructions: bool

Whether to add a cache point after the system prompt blocks.

When enabled, an extra cachePoint is appended to the system prompt so Bedrock can cache system instructions. See https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-caching.html for more information.

bedrock_cache_messages instance-attribute

bedrock_cache_messages: bool

Convenience setting to enable caching for the last user message.

When enabled, this automatically adds a cache point to the last content block in the final user message, which is useful for caching conversation history or context in multi-turn conversations.

Note: Uses 1 of Bedrock's 4 available cache points per request. Any additional CachePoint markers in messages will be automatically limited to respect the 4-cache-point maximum. See https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-caching.html for more information.

BedrockConverseModel dataclass

Bases: Model

A model that uses the Bedrock Converse API.

Source code in pydantic_ai_slim/pydantic_ai/models/bedrock.py
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
@dataclass(init=False)
class BedrockConverseModel(Model):
    """A model that uses the Bedrock Converse API."""

    client: BedrockRuntimeClient

    _model_name: BedrockModelName = field(repr=False)
    _provider: Provider[BaseClient] = field(repr=False)

    def __init__(
        self,
        model_name: BedrockModelName,
        *,
        provider: Literal['bedrock', 'gateway'] | Provider[BaseClient] = 'bedrock',
        profile: ModelProfileSpec | None = None,
        settings: ModelSettings | None = None,
    ):
        """Initialize a Bedrock model.

        Args:
            model_name: The name of the model to use.
            model_name: The name of the Bedrock model to use. List of model names available
                [here](https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html).
            provider: The provider to use for authentication and API access. Can be either the string
                'bedrock' or an instance of `Provider[BaseClient]`. If not provided, a new provider will be
                created using the other parameters.
            profile: The model profile to use. Defaults to a profile picked by the provider based on the model name.
            settings: Model-specific settings that will be used as defaults for this model.
        """
        self._model_name = model_name

        if isinstance(provider, str):
            provider = infer_provider('gateway/bedrock' if provider == 'gateway' else provider)
        self._provider = provider
        self.client = cast('BedrockRuntimeClient', provider.client)

        super().__init__(settings=settings, profile=profile or provider.model_profile)

    @property
    def base_url(self) -> str:
        return str(self.client.meta.endpoint_url)

    @property
    def model_name(self) -> str:
        """The model name."""
        return self._model_name

    @property
    def system(self) -> str:
        """The model provider."""
        return self._provider.name

    def _get_tools(self, model_request_parameters: ModelRequestParameters) -> list[ToolTypeDef]:
        return [self._map_tool_definition(r) for r in model_request_parameters.tool_defs.values()]

    @staticmethod
    def _map_tool_definition(f: ToolDefinition) -> ToolTypeDef:
        tool_spec: ToolSpecificationTypeDef = {'name': f.name, 'inputSchema': {'json': f.parameters_json_schema}}

        if f.description:  # pragma: no branch
            tool_spec['description'] = f.description

        return {'toolSpec': tool_spec}

    async def request(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> ModelResponse:
        model_settings, model_request_parameters = self.prepare_request(
            model_settings,
            model_request_parameters,
        )
        settings = cast(BedrockModelSettings, model_settings or {})
        response = await self._messages_create(messages, False, settings, model_request_parameters)
        model_response = await self._process_response(response)
        return model_response

    async def count_tokens(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> usage.RequestUsage:
        """Count the number of tokens, works with limited models.

        Check the actual supported models on <https://docs.aws.amazon.com/bedrock/latest/userguide/count-tokens.html>
        """
        model_settings, model_request_parameters = self.prepare_request(model_settings, model_request_parameters)
        settings = cast(BedrockModelSettings, model_settings or {})
        system_prompt, bedrock_messages = await self._map_messages(messages, model_request_parameters, settings)
        params: CountTokensRequestTypeDef = {
            'modelId': self._remove_inference_geo_prefix(self.model_name),
            'input': {
                'converse': {
                    'messages': bedrock_messages,
                    'system': system_prompt,
                },
            },
        }
        try:
            response = await anyio.to_thread.run_sync(functools.partial(self.client.count_tokens, **params))
        except ClientError as e:
            status_code = e.response.get('ResponseMetadata', {}).get('HTTPStatusCode')
            if isinstance(status_code, int):
                raise ModelHTTPError(status_code=status_code, model_name=self.model_name, body=e.response) from e
            raise ModelAPIError(model_name=self.model_name, message=str(e)) from e
        return usage.RequestUsage(input_tokens=response['inputTokens'])

    @asynccontextmanager
    async def request_stream(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
        run_context: RunContext[Any] | None = None,
    ) -> AsyncIterator[StreamedResponse]:
        model_settings, model_request_parameters = self.prepare_request(
            model_settings,
            model_request_parameters,
        )
        settings = cast(BedrockModelSettings, model_settings or {})
        response = await self._messages_create(messages, True, settings, model_request_parameters)
        yield BedrockStreamedResponse(
            model_request_parameters=model_request_parameters,
            _model_name=self.model_name,
            _event_stream=response['stream'],
            _provider_name=self._provider.name,
            _provider_url=self.base_url,
            _provider_response_id=response.get('ResponseMetadata', {}).get('RequestId', None),
        )

    async def _process_response(self, response: ConverseResponseTypeDef) -> ModelResponse:
        items: list[ModelResponsePart] = []
        if message := response['output'].get('message'):  # pragma: no branch
            for item in message['content']:
                if reasoning_content := item.get('reasoningContent'):
                    if redacted_content := reasoning_content.get('redactedContent'):
                        items.append(
                            ThinkingPart(
                                id='redacted_content',
                                content='',
                                signature=redacted_content.decode('utf-8'),
                                provider_name=self.system,
                            )
                        )
                    elif reasoning_text := reasoning_content.get('reasoningText'):  # pragma: no branch
                        signature = reasoning_text.get('signature')
                        items.append(
                            ThinkingPart(
                                content=reasoning_text['text'],
                                signature=signature,
                                provider_name=self.system if signature else None,
                            )
                        )
                if text := item.get('text'):
                    items.append(TextPart(content=text))
                elif tool_use := item.get('toolUse'):
                    items.append(
                        ToolCallPart(
                            tool_name=tool_use['name'],
                            args=tool_use['input'],
                            tool_call_id=tool_use['toolUseId'],
                        ),
                    )
        u = usage.RequestUsage(
            input_tokens=response['usage']['inputTokens'],
            output_tokens=response['usage']['outputTokens'],
            cache_read_tokens=response['usage'].get('cacheReadInputTokens', 0),
            cache_write_tokens=response['usage'].get('cacheWriteInputTokens', 0),
        )
        response_id = response.get('ResponseMetadata', {}).get('RequestId', None)
        raw_finish_reason = response['stopReason']
        provider_details = {'finish_reason': raw_finish_reason}
        finish_reason = _FINISH_REASON_MAP.get(raw_finish_reason)

        return ModelResponse(
            parts=items,
            usage=u,
            model_name=self.model_name,
            provider_response_id=response_id,
            provider_name=self._provider.name,
            provider_url=self.base_url,
            finish_reason=finish_reason,
            provider_details=provider_details,
        )

    @overload
    async def _messages_create(
        self,
        messages: list[ModelMessage],
        stream: Literal[True],
        model_settings: BedrockModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> ConverseStreamResponseTypeDef:
        pass

    @overload
    async def _messages_create(
        self,
        messages: list[ModelMessage],
        stream: Literal[False],
        model_settings: BedrockModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> ConverseResponseTypeDef:
        pass

    async def _messages_create(
        self,
        messages: list[ModelMessage],
        stream: bool,
        model_settings: BedrockModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> ConverseResponseTypeDef | ConverseStreamResponseTypeDef:
        settings = model_settings or BedrockModelSettings()
        system_prompt, bedrock_messages = await self._map_messages(messages, model_request_parameters, settings)
        inference_config = self._map_inference_config(settings)

        params: ConverseRequestTypeDef = {
            'modelId': self.model_name,
            'messages': bedrock_messages,
            'system': system_prompt,
            'inferenceConfig': inference_config,
        }

        tool_config = self._map_tool_config(model_request_parameters, settings)
        if tool_config:
            params['toolConfig'] = tool_config

        tools: list[ToolTypeDef] = list(tool_config['tools']) if tool_config else []
        self._limit_cache_points(system_prompt, bedrock_messages, tools)

        if model_request_parameters.builtin_tools:
            raise UserError('Bedrock does not support built-in tools')

        # Bedrock supports a set of specific extra parameters
        if model_settings:
            if guardrail_config := model_settings.get('bedrock_guardrail_config', None):
                params['guardrailConfig'] = guardrail_config
            if performance_configuration := model_settings.get('bedrock_performance_configuration', None):
                params['performanceConfig'] = performance_configuration
            if request_metadata := model_settings.get('bedrock_request_metadata', None):
                params['requestMetadata'] = request_metadata
            if additional_model_response_fields_paths := model_settings.get(
                'bedrock_additional_model_response_fields_paths', None
            ):
                params['additionalModelResponseFieldPaths'] = additional_model_response_fields_paths
            if additional_model_requests_fields := model_settings.get('bedrock_additional_model_requests_fields', None):
                params['additionalModelRequestFields'] = additional_model_requests_fields
            if prompt_variables := model_settings.get('bedrock_prompt_variables', None):
                params['promptVariables'] = prompt_variables

        try:
            if stream:
                model_response = await anyio.to_thread.run_sync(
                    functools.partial(self.client.converse_stream, **params)
                )
            else:
                model_response = await anyio.to_thread.run_sync(functools.partial(self.client.converse, **params))
        except ClientError as e:
            status_code = e.response.get('ResponseMetadata', {}).get('HTTPStatusCode')
            if isinstance(status_code, int):
                raise ModelHTTPError(status_code=status_code, model_name=self.model_name, body=e.response) from e
            raise ModelAPIError(model_name=self.model_name, message=str(e)) from e
        return model_response

    @staticmethod
    def _map_inference_config(
        model_settings: ModelSettings | None,
    ) -> InferenceConfigurationTypeDef:
        model_settings = model_settings or {}
        inference_config: InferenceConfigurationTypeDef = {}

        if max_tokens := model_settings.get('max_tokens'):
            inference_config['maxTokens'] = max_tokens
        if (temperature := model_settings.get('temperature')) is not None:
            inference_config['temperature'] = temperature
        if top_p := model_settings.get('top_p'):
            inference_config['topP'] = top_p
        if stop_sequences := model_settings.get('stop_sequences'):
            inference_config['stopSequences'] = stop_sequences

        return inference_config

    def _map_tool_config(
        self,
        model_request_parameters: ModelRequestParameters,
        model_settings: BedrockModelSettings | None,
    ) -> ToolConfigurationTypeDef | None:
        tools = self._get_tools(model_request_parameters)
        if not tools:
            return None

        profile = BedrockModelProfile.from_profile(self.profile)
        if (
            model_settings
            and model_settings.get('bedrock_cache_tool_definitions')
            and profile.bedrock_supports_tool_caching
        ):
            tools.append({'cachePoint': {'type': 'default'}})

        tool_choice: ToolChoiceTypeDef
        if not model_request_parameters.allow_text_output:
            tool_choice = {'any': {}}
        else:
            tool_choice = {'auto': {}}

        tool_config: ToolConfigurationTypeDef = {'tools': tools}
        if tool_choice and BedrockModelProfile.from_profile(self.profile).bedrock_supports_tool_choice:
            tool_config['toolChoice'] = tool_choice

        return tool_config

    async def _map_messages(  # noqa: C901
        self,
        messages: list[ModelMessage],
        model_request_parameters: ModelRequestParameters,
        model_settings: BedrockModelSettings | None,
    ) -> tuple[list[SystemContentBlockTypeDef], list[MessageUnionTypeDef]]:
        """Maps a `pydantic_ai.Message` to the Bedrock `MessageUnionTypeDef`.

        Groups consecutive ToolReturnPart objects into a single user message as required by Bedrock Claude/Nova models.
        """
        settings = model_settings or BedrockModelSettings()
        profile = BedrockModelProfile.from_profile(self.profile)
        system_prompt: list[SystemContentBlockTypeDef] = []
        bedrock_messages: list[MessageUnionTypeDef] = []
        document_count: Iterator[int] = count(1)
        for message in messages:
            if isinstance(message, ModelRequest):
                for part in message.parts:
                    if isinstance(part, SystemPromptPart) and part.content:
                        system_prompt.append({'text': part.content})
                    elif isinstance(part, UserPromptPart):
                        bedrock_messages.extend(
                            await self._map_user_prompt(part, document_count, profile.bedrock_supports_prompt_caching)
                        )
                    elif isinstance(part, ToolReturnPart):
                        assert part.tool_call_id is not None
                        bedrock_messages.append(
                            {
                                'role': 'user',
                                'content': [
                                    {
                                        'toolResult': {
                                            'toolUseId': part.tool_call_id,
                                            'content': [
                                                {'text': part.model_response_str()}
                                                if profile.bedrock_tool_result_format == 'text'
                                                else {'json': part.model_response_object()}
                                            ],
                                            'status': 'success',
                                        }
                                    }
                                ],
                            }
                        )
                    elif isinstance(part, RetryPromptPart):
                        # TODO(Marcelo): We need to add a test here.
                        if part.tool_name is None:  # pragma: no cover
                            bedrock_messages.append({'role': 'user', 'content': [{'text': part.model_response()}]})
                        else:
                            assert part.tool_call_id is not None
                            bedrock_messages.append(
                                {
                                    'role': 'user',
                                    'content': [
                                        {
                                            'toolResult': {
                                                'toolUseId': part.tool_call_id,
                                                'content': [{'text': part.model_response()}],
                                                'status': 'error',
                                            }
                                        }
                                    ],
                                }
                            )
            elif isinstance(message, ModelResponse):
                content: list[ContentBlockOutputTypeDef] = []
                for item in message.parts:
                    if isinstance(item, TextPart):
                        content.append({'text': item.content})
                    elif isinstance(item, ThinkingPart):
                        if (
                            item.provider_name == self.system
                            and item.signature
                            and BedrockModelProfile.from_profile(self.profile).bedrock_send_back_thinking_parts
                        ):
                            if item.id == 'redacted_content':
                                reasoning_content: ReasoningContentBlockOutputTypeDef = {
                                    'redactedContent': item.signature.encode('utf-8'),
                                }
                            else:
                                reasoning_content: ReasoningContentBlockOutputTypeDef = {
                                    'reasoningText': {
                                        'text': item.content,
                                        'signature': item.signature,
                                    }
                                }
                            content.append({'reasoningContent': reasoning_content})
                        else:
                            start_tag, end_tag = self.profile.thinking_tags
                            content.append({'text': '\n'.join([start_tag, item.content, end_tag])})
                    elif isinstance(item, BuiltinToolCallPart | BuiltinToolReturnPart):
                        pass
                    else:
                        assert isinstance(item, ToolCallPart)
                        content.append(self._map_tool_call(item))
                if content:
                    bedrock_messages.append({'role': 'assistant', 'content': content})
            else:
                assert_never(message)

        # Merge together sequential user messages.
        processed_messages: list[MessageUnionTypeDef] = []
        last_message: dict[str, Any] | None = None
        for current_message in bedrock_messages:
            if (
                last_message is not None
                and current_message['role'] == last_message['role']
                and current_message['role'] == 'user'
            ):
                # Add the new user content onto the existing user message.
                last_content = list(last_message['content'])
                last_content.extend(current_message['content'])
                last_message['content'] = last_content
                continue

            # Add the entire message to the list of messages.
            processed_messages.append(current_message)
            last_message = cast(dict[str, Any], current_message)

        if instructions := self._get_instructions(messages, model_request_parameters):
            system_prompt.insert(0, {'text': instructions})

        if system_prompt and settings.get('bedrock_cache_instructions') and profile.bedrock_supports_prompt_caching:
            system_prompt.append({'cachePoint': {'type': 'default'}})

        if processed_messages and settings.get('bedrock_cache_messages') and profile.bedrock_supports_prompt_caching:
            last_user_content = self._get_last_user_message_content(processed_messages)
            if last_user_content is not None:
                # AWS currently rejects cache points that directly follow non-text content.
                # Insert a newline text block as a workaround.
                if 'text' not in last_user_content[-1]:
                    last_user_content.append({'text': '\n'})
                last_user_content.append({'cachePoint': {'type': 'default'}})

        return system_prompt, processed_messages

    @staticmethod
    def _get_last_user_message_content(messages: list[MessageUnionTypeDef]) -> list[Any] | None:
        """Get the content list from the last user message that can receive a cache point.

        Returns the content list if:
        - A user message exists
        - It has a non-empty content list
        - The last content block doesn't already have a cache point

        Returns None otherwise.
        """
        user_messages = [msg for msg in messages if msg.get('role') == 'user']
        if not user_messages:
            return None

        content = user_messages[-1].get('content')  # Last user message
        if not content or not isinstance(content, list) or len(content) == 0:
            return None

        last_block = content[-1]
        if not isinstance(last_block, dict):
            return None
        if 'cachePoint' in last_block:  # Skip if already has a cache point
            return None
        return content

    @staticmethod
    async def _map_user_prompt(  # noqa: C901
        part: UserPromptPart,
        document_count: Iterator[int],
        supports_prompt_caching: bool,
    ) -> list[MessageUnionTypeDef]:
        content: list[ContentBlockUnionTypeDef] = []
        if isinstance(part.content, str):
            content.append({'text': part.content})
        else:
            for item in part.content:
                if isinstance(item, str):
                    content.append({'text': item})
                elif isinstance(item, BinaryContent):
                    format = item.format
                    if item.is_document:
                        name = f'Document {next(document_count)}'
                        assert format in ('pdf', 'txt', 'csv', 'doc', 'docx', 'xls', 'xlsx', 'html', 'md')
                        content.append({'document': {'name': name, 'format': format, 'source': {'bytes': item.data}}})
                    elif item.is_image:
                        assert format in ('jpeg', 'png', 'gif', 'webp')
                        content.append({'image': {'format': format, 'source': {'bytes': item.data}}})
                    elif item.is_video:
                        assert format in ('mkv', 'mov', 'mp4', 'webm', 'flv', 'mpeg', 'mpg', 'wmv', 'three_gp')
                        content.append({'video': {'format': format, 'source': {'bytes': item.data}}})
                    else:
                        raise NotImplementedError('Binary content is not supported yet.')
                elif isinstance(item, ImageUrl | DocumentUrl | VideoUrl):
                    downloaded_item = await download_item(item, data_format='bytes', type_format='extension')
                    format = downloaded_item['data_type']
                    if item.kind == 'image-url':
                        format = item.media_type.split('/')[1]
                        assert format in ('jpeg', 'png', 'gif', 'webp'), f'Unsupported image format: {format}'
                        image: ImageBlockTypeDef = {'format': format, 'source': {'bytes': downloaded_item['data']}}
                        content.append({'image': image})

                    elif item.kind == 'document-url':
                        name = f'Document {next(document_count)}'
                        document: DocumentBlockTypeDef = {
                            'name': name,
                            'format': item.format,
                            'source': {'bytes': downloaded_item['data']},
                        }
                        content.append({'document': document})

                    elif item.kind == 'video-url':  # pragma: no branch
                        format = item.media_type.split('/')[1]
                        assert format in (
                            'mkv',
                            'mov',
                            'mp4',
                            'webm',
                            'flv',
                            'mpeg',
                            'mpg',
                            'wmv',
                            'three_gp',
                        ), f'Unsupported video format: {format}'
                        video: VideoBlockTypeDef = {'format': format, 'source': {'bytes': downloaded_item['data']}}
                        content.append({'video': video})
                elif isinstance(item, AudioUrl):  # pragma: no cover
                    raise NotImplementedError('Audio is not supported yet.')
                elif isinstance(item, CachePoint):
                    if not supports_prompt_caching:
                        # Silently skip CachePoint for models that don't support prompt caching
                        continue
                    if not content or 'cachePoint' in content[-1]:
                        raise UserError(
                            'CachePoint cannot be the first content in a user message - there must be previous content to cache when using Bedrock. '
                            'To cache system instructions or tool definitions, use the `bedrock_cache_instructions` or `bedrock_cache_tool_definitions` settings instead.'
                        )
                    if 'text' not in content[-1]:
                        # AWS currently rejects cache points that directly follow non-text content.
                        # Insert an empty text block as a workaround (see https://github.com/pydantic/pydantic-ai/issues/3418
                        # and https://github.com/pydantic/pydantic-ai/pull/2560#discussion_r2349209916).
                        content.append({'text': '\n'})
                    content.append({'cachePoint': {'type': 'default'}})
                else:
                    assert_never(item)
        return [{'role': 'user', 'content': content}]

    @staticmethod
    def _map_tool_call(t: ToolCallPart) -> ContentBlockOutputTypeDef:
        return {
            'toolUse': {'toolUseId': _utils.guard_tool_call_id(t=t), 'name': t.tool_name, 'input': t.args_as_dict()}
        }

    @staticmethod
    def _limit_cache_points(
        system_prompt: list[SystemContentBlockTypeDef],
        bedrock_messages: list[MessageUnionTypeDef],
        tools: list[ToolTypeDef],
    ) -> None:
        """Limit the number of cache points in the request to Bedrock's maximum.

        Bedrock enforces a maximum of 4 cache points per request. This method ensures
        compliance by counting existing cache points and removing excess ones from messages.

        Strategy:
        1. Count cache points in system_prompt
        2. Count cache points in tools
        3. Raise UserError if system + tools already exceed MAX_CACHE_POINTS
        4. Calculate remaining budget for message cache points
        5. Traverse messages from newest to oldest, keeping the most recent cache points
           within the remaining budget
        6. Remove excess cache points from older messages to stay within limit

        Cache point priority (always preserved):
        - System prompt cache points
        - Tool definition cache points
        - Message cache points (newest first, oldest removed if needed)

        Raises:
            UserError: If system_prompt and tools combined already exceed MAX_CACHE_POINTS (4).
                      This indicates a configuration error that cannot be auto-fixed.
        """
        MAX_CACHE_POINTS = 4

        # Count existing cache points in system prompt
        used_cache_points = sum(1 for block in system_prompt if 'cachePoint' in block)

        # Count existing cache points in tools
        for tool in tools:
            if 'cachePoint' in tool:
                used_cache_points += 1

        # Calculate remaining cache points budget for messages
        remaining_budget = MAX_CACHE_POINTS - used_cache_points
        if remaining_budget < 0:  # pragma: no cover
            raise UserError(
                f'Too many cache points for Bedrock request. '
                f'System prompt and tool definitions already use {used_cache_points} cache points, '
                f'which exceeds the maximum of {MAX_CACHE_POINTS}.'
            )

        # Remove excess cache points from messages (newest to oldest)
        for message in reversed(bedrock_messages):
            content = message.get('content')
            if not content or not isinstance(content, list):  # pragma: no cover
                continue

            # Build a new content list, keeping only cache points within budget
            new_content: list[Any] = []
            for block in reversed(content):  # Process newest first
                is_cache_point = isinstance(block, dict) and 'cachePoint' in block
                if is_cache_point:
                    if remaining_budget > 0:
                        remaining_budget -= 1
                        new_content.append(block)
                else:
                    new_content.append(block)
            message['content'] = list(reversed(new_content))  # Restore original order

    @staticmethod
    def _remove_inference_geo_prefix(model_name: BedrockModelName) -> BedrockModelName:
        """Remove inference geographic prefix from model ID if present."""
        for prefix in BEDROCK_GEO_PREFIXES:
            if model_name.startswith(f'{prefix}.'):
                return model_name.removeprefix(f'{prefix}.')
        return model_name

__init__

__init__(
    model_name: BedrockModelName,
    *,
    provider: (
        Literal["bedrock", "gateway"] | Provider[BaseClient]
    ) = "bedrock",
    profile: ModelProfileSpec | None = None,
    settings: ModelSettings | None = None
)

Initialize a Bedrock model.

Parameters:

Name Type Description Default
model_name BedrockModelName

The name of the model to use.

required
model_name BedrockModelName

The name of the Bedrock model to use. List of model names available here.

required
provider Literal['bedrock', 'gateway'] | Provider[BaseClient]

The provider to use for authentication and API access. Can be either the string 'bedrock' or an instance of Provider[BaseClient]. If not provided, a new provider will be created using the other parameters.

'bedrock'
profile ModelProfileSpec | None

The model profile to use. Defaults to a profile picked by the provider based on the model name.

None
settings ModelSettings | None

Model-specific settings that will be used as defaults for this model.

None
Source code in pydantic_ai_slim/pydantic_ai/models/bedrock.py
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
def __init__(
    self,
    model_name: BedrockModelName,
    *,
    provider: Literal['bedrock', 'gateway'] | Provider[BaseClient] = 'bedrock',
    profile: ModelProfileSpec | None = None,
    settings: ModelSettings | None = None,
):
    """Initialize a Bedrock model.

    Args:
        model_name: The name of the model to use.
        model_name: The name of the Bedrock model to use. List of model names available
            [here](https://docs.aws.amazon.com/bedrock/latest/userguide/models-supported.html).
        provider: The provider to use for authentication and API access. Can be either the string
            'bedrock' or an instance of `Provider[BaseClient]`. If not provided, a new provider will be
            created using the other parameters.
        profile: The model profile to use. Defaults to a profile picked by the provider based on the model name.
        settings: Model-specific settings that will be used as defaults for this model.
    """
    self._model_name = model_name

    if isinstance(provider, str):
        provider = infer_provider('gateway/bedrock' if provider == 'gateway' else provider)
    self._provider = provider
    self.client = cast('BedrockRuntimeClient', provider.client)

    super().__init__(settings=settings, profile=profile or provider.model_profile)

model_name property

model_name: str

The model name.

system property

system: str

The model provider.

count_tokens async

count_tokens(
    messages: list[ModelMessage],
    model_settings: ModelSettings | None,
    model_request_parameters: ModelRequestParameters,
) -> RequestUsage

Count the number of tokens, works with limited models.

Check the actual supported models on https://docs.aws.amazon.com/bedrock/latest/userguide/count-tokens.html

Source code in pydantic_ai_slim/pydantic_ai/models/bedrock.py
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
async def count_tokens(
    self,
    messages: list[ModelMessage],
    model_settings: ModelSettings | None,
    model_request_parameters: ModelRequestParameters,
) -> usage.RequestUsage:
    """Count the number of tokens, works with limited models.

    Check the actual supported models on <https://docs.aws.amazon.com/bedrock/latest/userguide/count-tokens.html>
    """
    model_settings, model_request_parameters = self.prepare_request(model_settings, model_request_parameters)
    settings = cast(BedrockModelSettings, model_settings or {})
    system_prompt, bedrock_messages = await self._map_messages(messages, model_request_parameters, settings)
    params: CountTokensRequestTypeDef = {
        'modelId': self._remove_inference_geo_prefix(self.model_name),
        'input': {
            'converse': {
                'messages': bedrock_messages,
                'system': system_prompt,
            },
        },
    }
    try:
        response = await anyio.to_thread.run_sync(functools.partial(self.client.count_tokens, **params))
    except ClientError as e:
        status_code = e.response.get('ResponseMetadata', {}).get('HTTPStatusCode')
        if isinstance(status_code, int):
            raise ModelHTTPError(status_code=status_code, model_name=self.model_name, body=e.response) from e
        raise ModelAPIError(model_name=self.model_name, message=str(e)) from e
    return usage.RequestUsage(input_tokens=response['inputTokens'])

BedrockStreamedResponse dataclass

Bases: StreamedResponse

Implementation of StreamedResponse for Bedrock models.

Source code in pydantic_ai_slim/pydantic_ai/models/bedrock.py
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
@dataclass
class BedrockStreamedResponse(StreamedResponse):
    """Implementation of `StreamedResponse` for Bedrock models."""

    _model_name: BedrockModelName
    _event_stream: EventStream[ConverseStreamOutputTypeDef]
    _provider_name: str
    _provider_url: str
    _timestamp: datetime = field(default_factory=_utils.now_utc)
    _provider_response_id: str | None = None

    async def _get_event_iterator(self) -> AsyncIterator[ModelResponseStreamEvent]:  # noqa: C901
        """Return an async iterator of [`ModelResponseStreamEvent`][pydantic_ai.messages.ModelResponseStreamEvent]s.

        This method should be implemented by subclasses to translate the vendor-specific stream of events into
        pydantic_ai-format events.
        """
        if self._provider_response_id is not None:  # pragma: no cover
            self.provider_response_id = self._provider_response_id

        chunk: ConverseStreamOutputTypeDef
        tool_id: str | None = None
        async for chunk in _AsyncIteratorWrapper(self._event_stream):
            match chunk:
                case {'messageStart': _}:
                    continue
                case {'messageStop': message_stop}:
                    raw_finish_reason = message_stop['stopReason']
                    self.provider_details = {'finish_reason': raw_finish_reason}
                    self.finish_reason = _FINISH_REASON_MAP.get(raw_finish_reason)
                case {'metadata': metadata}:
                    if 'usage' in metadata:  # pragma: no branch
                        self._usage += self._map_usage(metadata)
                case {'contentBlockStart': content_block_start}:
                    index = content_block_start['contentBlockIndex']
                    start = content_block_start['start']
                    if 'toolUse' in start:  # pragma: no branch
                        tool_use_start = start['toolUse']
                        tool_id = tool_use_start['toolUseId']
                        tool_name = tool_use_start['name']
                        maybe_event = self._parts_manager.handle_tool_call_delta(
                            vendor_part_id=index,
                            tool_name=tool_name,
                            args=None,
                            tool_call_id=tool_id,
                        )
                        if maybe_event:  # pragma: no branch
                            yield maybe_event
                case {'contentBlockDelta': content_block_delta}:
                    index = content_block_delta['contentBlockIndex']
                    delta = content_block_delta['delta']
                    if 'reasoningContent' in delta:
                        if redacted_content := delta['reasoningContent'].get('redactedContent'):
                            for event in self._parts_manager.handle_thinking_delta(
                                vendor_part_id=index,
                                id='redacted_content',
                                signature=redacted_content.decode('utf-8'),
                                provider_name=self.provider_name,
                            ):
                                yield event
                        else:
                            signature = delta['reasoningContent'].get('signature')
                            for event in self._parts_manager.handle_thinking_delta(
                                vendor_part_id=index,
                                content=delta['reasoningContent'].get('text'),
                                signature=signature,
                                provider_name=self.provider_name if signature else None,
                            ):
                                yield event
                    if text := delta.get('text'):
                        for event in self._parts_manager.handle_text_delta(vendor_part_id=index, content=text):
                            yield event
                    if 'toolUse' in delta:
                        tool_use = delta['toolUse']
                        maybe_event = self._parts_manager.handle_tool_call_delta(
                            vendor_part_id=index,
                            tool_name=tool_use.get('name'),
                            args=tool_use.get('input'),
                            tool_call_id=tool_id,
                        )
                        if maybe_event:  # pragma: no branch
                            yield maybe_event
                case _:
                    pass  # pyright wants match statements to be exhaustive

    @property
    def model_name(self) -> str:
        """Get the model name of the response."""
        return self._model_name

    @property
    def provider_name(self) -> str:
        """Get the provider name."""
        return self._provider_name

    @property
    def provider_url(self) -> str:
        """Get the provider base URL."""
        return self._provider_url

    @property
    def timestamp(self) -> datetime:
        return self._timestamp

    def _map_usage(self, metadata: ConverseStreamMetadataEventTypeDef) -> usage.RequestUsage:
        return usage.RequestUsage(
            input_tokens=metadata['usage']['inputTokens'],
            output_tokens=metadata['usage']['outputTokens'],
            cache_read_tokens=metadata['usage'].get('cacheReadInputTokens', 0),
            cache_write_tokens=metadata['usage'].get('cacheWriteInputTokens', 0),
        )

model_name property

model_name: str

Get the model name of the response.

provider_name property

provider_name: str

Get the provider name.

provider_url property

provider_url: str

Get the provider base URL.